- K. Bhat, Decomposability of iterated extensions, Int. J. Math. Game Theory Algebra, Vol. 15(1) (2006), 45-48.
- K. Bhat, Krull dimension of skew polynomial rings, Lobachevskii J. Math., Vol. 22 (2006), 3-6.
- K. Bhat, On 2-primal ore extensions, Ukr. Math. Bull., Vol. 4(2) (2007), 173-179.
- K. Bhat, Polynomial rings over pseudovaluation rings, Int. J. Math. Math. Sci, Article ID 20138 (2007)
- K. Bhat, Associated prime ideals of skew polynomial rings, Beitr. Algebra Geom., Vol. 49(1) (2008), 277-283.
- K. Bhat and Ravi Raina, Ore extensions over 2-primal rings, Vietnam J. Math., Vol. 36(4) (2008), 455-461.
- K. Bhat, Differential operator rings over 2-primal rings, Ukr. Math. Bull., Vol. 5(2) (2008), 153-158.
- K. Bhat, Ideal Krull symmetry of iterated extensions, Sib. Èlektron. Mat. Izv., Vol. 5 (2008), 193-199.
- K. Bhat, Ore extensions over 2-primal Noetharian rings, Bul. Acad. Ştiinţe Repub. Mold. Mat., Vol. 58(3) (2008), 34-43.
- K. Bhat, Decomposability of extension rings, Alb. J Math, Vol. 2(4) (2008), 283-291.
- K. Bhat and Ravi Raina, Ore extensions over 2-primal rings, Vietnam J. Math., Vol. 36(4) (2008), 455-461.
- K.Bhat, Transparent rings and their extensions, New York J. Math., Vol. 15 (2009), 291-299.
- Ajay Koul, R.B. Patel, V.K. Bhat, Double split based secure multipath routing in Mobile Adhoc Networks, IEEE explore (2009), 835-939.
- Ravi Raina, V. K. Bhat and Neetu Kumari, Commutativity of Prime Gamma Near Rings with $Gamma-(sigma, tau)$-derivation, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 25(2) (2009), 165-173.
- K. Bhat, Automorphisms and derivations on the center of a ring, Alb. J Math., Vol. 3(2) (2009), 57-61.
- K. Bhat, Prime radical of Ore extensions over d-rigid rings, Algebra Discrete Math., No. 1 (2009), 14-19.
- K. Bhat, On near Pseudo-valuation rings and their extensions, Int. Electron. J. Algebra, Vol. 5 (2009), 70-77.
- K. Bhat, A note on Ore extensions over Pseudo valuation rings, Ukr. Math. Bull., Vol. 6(2) (2009), 150 – 156.
- K.Bhat, Corrigendum: On near Pseudo-valuation rings and their extensions, Int. Electron. J. Algebra, Vol. 6 (2009), 134-135.
- K. Bhat and Neetu Kumari, A note on s(*)-rings and their extensions, Sib. Èlektron. Mat. Izv., Vol. 6 (2009), 505-509.
- K. Bhat, A note on completely prime ideals of Ore extensions, Internat. J. Algebra Comput., Vol. 20(3) (2010), 457-463.
- Ajay Koul, R.B. Patel, V.K. Bhat, Distance and frequency based route stability estimation in Mobile Adhoc Networks, Journal of emerging technology and web intelligence, Vol. 2 (2) 2010, 89-95.
- K. Bhat, On semi Pseudo-valuation rings and their extensions, Lobachevskii J. Math., Vol. 31(1) (2010), 8-12.
- K. Bhat, Ore extensions over near pseudo valuation rings, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 26(1) (2010), 45-53.
- K. Bhat, Ore extensions over Weak s-rigid rings and s (*)-rings, Eur. J. Pure Appl. Math., Vol. 3(4) (2010), 695-703.
- K. Bhat, Associated prime ideals of weak s-rigid rings and their extensions, Algebra Discrete Math., Vol.10(1) (2010), 8-17.
- Ajay Koul, R.B. Patel, V.K. Bhat, A System Level Security for Mobile Ad hoc Networks, IEEE Explore, (2011), 72-76.
- K. Bhat, Prime ideals of s(*)-rings and their extensions, Lobachevskii J. Math., Vol. 32( 1) (2011), 102–106.
- K. Bhat, On 2-primal Ore extensions over Noetherian s(*)-rings, Bul. Acad. Ştiinţe Repub. Mold. Mat., No. 1(65) (2011), 42-49.
- K. Bhat and Kiran Chib, Transparent Ore extensions over weak s-rigid rings, Sib. Èlektron. Mat. Izv., Vol. 8 (2011), 116–122.
- K. Bhat, Ore extensions over near pseudo valuation rings and Noetherian rings, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 27(1) (2011), 1-7.
- K. Bhat and Neetu Kumari, On Ore extensions over near pseudo valuation rings, Int. J. Math. Game Theory Algebra, Vol. 20(1) (2011), 69-77.
- K. Bhat, Transparent Ore extensions over s(*)-rings, Eur. J. Pure Appl. Math, Vol. 4(3) (2011), 221-229.
- K. Bhat, On pseudo-valuation rings and their extensions, Algebra Discrete Math., Vol. 12(2) (2011), 25-30.
- K. Bhat, Ideal Krull symmetry of skew polynomial rings, Beitr. Algebra Geom., Vol. 53(2) (2012), 507-514.
- K. Bhat, Minimal prime ideals of skew polynomial rings and pseudo valuation rings, Czechoslovak Math. J., Vol. 63 (138) (2013), 1049–1056.
- K. Bhat, Completely Prime ideals of Skew-Laurent ring, Lobachevskii J. Math., Vol. 34( 1) (2013), 99–105.
- K. Bhat, Completely pseudo valuation rings over s(*)-rings, Int. J. Math. Game Theory Algebra, Vol. 20(4) (2013), 13-24.
- Neetu Kumari, Smarti Gosani and V. K. Bhat, Skew polynomial rings over weak s-rigid rings and s(*)-rings, J. Pure Appl. Math, Vol. 6(1) (2013), 59-65.
- K. Bhat, Minimal prime ideals of s(*)-rings and their extensions, Arm. J. Math., Vol. 5 (2) (2013), 98–104.
- K. Bhat, Ore extensions over near pseudo valuation rings and Noetherian rings, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 29 (1) (2013), 1–7.
- K. Bhat, Completely pseudo valuation rings and their extensions, Pub. de l’Ins. Math., Vol. 95 (109) (2014), 249-254.
- K. Bhat, Skew-Laurent rings over s(*)-rings, Eur. J. Pure Appl. Math, Vol. 7(4) (2014), 387-394.
- Smarti Gosani and V. K. Bhat, Ore extensions over 2-primal SI rings, Int. J. Math. Game Theory Algebra, Vol. 23(2) (2014), 103-108.
- K. Bhat, On 2-primal Ore extensions over Noetherian weak (s,d)-rigid rings, Bul. Acad. Ştiinţe Repub. Mold. Mat., No. 2(75) (2014), 51-59.
- K. Bhat, On Completely Prime left ideals of Ore extensions, Lobachevskii J. Math., Vol. 36(1) (2015), 79-84.
- K. Bhat and Kiran Chib, Transparency of Skew polynomial ring over a commutative Noetherian ring, Eur. J. Pure Appl. Math, Vol. 8(1) (2015), 111-117.
- Smarti Gosani and V. K. Bhat, 2-primal Ore extensions over weak s-rigid rings, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Vol. 31(2) (2015), 227-232.
- K. Bhat and Meeru Abrol, Ore extensions over (s,d)-rings, Eur. J. Pure Appl. Math, Vol. 8(4) (2015), 462-468.
- K. Bhat, Polynomial rings over near completely prime ideal rings, Int. J. Math. Game Theory Algebra, Vol. 23(4) (2015), 325-332.
- K. Bhat and Meeru Abrol, Skew polynomial rings over σ-skew Armendariz rings, Cogent Mathematics (2016), 3: 1183287.
- Vijay Kumar Bhat, Meeru Abrol, Latif Hanna, Maryam Alkandari, On (s,d)-rings over Noetherian rings, Bul. Acad. Ştiinţe Repub. Mold. Mat., 3(82) (2016), 3-11.
- K. Bhat, Completely generalized right primary rings and their extensions, Arm. J. Math., Vol. 9 (1) (2017), 20–26.
- Vijay Kumar Bhat, Pradeep Singh and Arun Dutta, Transparency of Ore extensions over left s-(S,1) rings, Bul. Acad. Ştiinţe Repub. Mold. Mat., 3(88) (2018), 14-21.
- Pradeep Singh and Vijay Kumar Bhat, Zero divisor graphs of finite commutative rings: A survey, Math. Appl., Vol. 15 (2020), 371-397.
- Vijay Kumar Bhat, Pradeep Singh and Sunny Kumar Sharma, On Weak (s, δ)-rigid rings over Noetherian rings, Acta Univ. Sapientiae Math., Vol. 12(1) (2020), 5-13.
- Pradeep Singh and Vijay Kumar Bhat, Adjacency matrix and Wiener index of zero divisor graph G(Zn), J. Appl. Math. Comput. Vol. 66 (2021), 717–732, DOI 10.1007/s12190-020-01460-2
- Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma and Vijay Kumar Bhat, Metric dimension and edge metric dimension of windmill graphs, AIMS Mathematics, 6(9) (2021), 9138-9153. DOI:10.3934/math.2021531.
-
Sunny Kumar Sharma, Hassan Raza and Vijay Kumar Bhat, Computing Edge Metric Dimension of One-Pentagonal Carbon Nanocone, Frontiers in Physics, (2021), doi: 10.3389/fphy.2021.749166.
-
Sunny Kumar Sharma and Vijay Kumar Bhat, Metric Dimension of heptagonal circular ladder, Discrete Math. Algorithms Appl., Vol. 13(1) (2021), 2050095 (17 pages), https://doi.org/10.1142/S1793830920500950
-
Sunny Kumar Sharma and Vijay Kumar Bhat, Fault-tolerant metric dimension of two-fold heptagonal-nonagonal circular ladder, Discrete Math. Algorithms Appl., Vol. 14(3) (2022), https://doi.org/10.1142/S1793830921501329
- Sahil Sharma & Vijay Kumar Bhat, Vertex resolvability of convex polytopes with n paths of length p, J. Comput. Math. Comput. Syst. Theory Vol. 7(2) (2022), 129-138. DOI: 10.1080/23799927.2022.2059012
- Sunny Kumar Sharma and Vijay Kumar Bhat, Computing vertex resolvability of some regular planar graphs, Discrete Math. Algorithms Appl., (2022), 2250086 https://doi.org/10.1142/S1793830922500860
- Vijay Kumar Bhat and Sunny Kumar Sharma, Zagreb and Wiener Indices of the Conjugacy Class Graph of the Quasi-Dihedral and Generalized Quaternion Groups, Math. Inf. Sci., Vol. 16(5) (2022), 815-822. DOI:10.18576/amis/160515
- Karnika Sharma, and Vijay Kumar Bhat, On the Orbits of Some Metabelian Groups, TWMS J. App. and Eng. Math. Vol. 12(3) (2022), 799-807
-
Sohan Lal and Vijay Kumar Bhat, On the Dominant Local Metric Dimension of Some Planar Graphs, Discrete Math. Algorithms Appl., (2022). https://doi.org/10.1142/S179383092250152X
-
Sunny Kumar Sharma,Vijay Kumar Bhat and Pradeep Singh, On Metric Dimension of Some Planar Graphs with 2n Odd Sided Faces, Discrete Math. Algorithms Appl. (2022) 2250185. https://doi.org/10.1142/S1793830922501853
-
S. K. Sharma, H. Raza, V. K. Bhat, “Fault-tolerant resolvability of some graphs of convex polytopes”, Diskr. Mat., 34:4 (2022), 108–122.
-
Sahil Sharma & Vijay Kumar Bhat, Fault-tolerant metric dimension of zero-divisor
graphs of commutative rings, AKCE Int. J Graph Theory and Comb. Vol. 19(1) (2022), 24-30, DOI: 10.1080/09728600.2021.2009746
-
Pradeep Singh and Vijay Kumar Bhat, Graph invariants of the line graph of zero divisor graph of Zn, Appl. Math. Comput. Vol. 68, (2022), 1271–1287, https://doi.org/10.1007/s12190-021-01567-0.
-
Sunny Kumar Sharma, Vijay Kumar Bhat, Hassan Raza, Sahil Sharma, On mixed metric dimension of polycyclic aromatic hydrocarbon networks, Chemical Papers, (2022), https://doi.org/10.1007/s11696-022-02151-x
-
Karnika Sharma, Vijay Kumar Bhat and Sunny Kumar Sharma, Edge Metric Dimension and Edge Basis of One-Heptagonal Carbon Nanocone Networks, IEEE Access (2022), DOI: 10.1109/ACCESS.2022.3158982
-
Yogesh Singh, Hassan Raza , Sunny Kumar Sharma, and Vijay Kumar Bhat, Computing Basis and Dimension of Chloroquine and Hydroxychloroquine by Using Chemical Graph Theory, Polycyclic Aromatic Compounds, Vol 43(5) (2022), 4131–4147, DOI: https://doi.org/10.1080/10406638.2022.2086269
- Karnika Sharma, and Vijay Kumar Bhat, On Topological Descriptors of Polycyclic Aromatic Benzenoid Systems, Polycyclic Aromatic Compounds, Vol 43(5) (2022), 4111-4130, DOI: https://doi.org/10.1080/10406638.2022.2086273
-
Karnika Sharma, Vijay Kumar Bhat, and Sunny Kumar Sharma, On Degree-Based Topological Indices of Carbon Nanocones, ACS Omega, 7, 49, (2022) 45562–45573. https://doi.org/10.1021/acsomega.2c06287
- Sunny Kumar Sharma, Vijay Kumar Bhat, and Sohal Lal, Edge resolving number of pentagonal circular ladder, Univ. Craiova Ser. Mat. Inform., 50(1) (2023), 152–170.
-
Jia-Bao Liu, Sunny Kumar Sharma, Vijay Kumar Bhat & Hassan Raza, Multiset and Mixed Metric Dimension for Starphene and Zigzag-Edge Coronoid, Polycyclic Aromatic Compounds, (2023), Vol. 43(1), 190–204. https://doi.org/10.1080/10406638.2021.2019066
-
Sahil Sharma, Vijay Kumar Bhat and Sohan Lal, Multiplicative Topological Indices of the Crystal Cubic Carbon Structure, Cryst. Res. Technol. (2023) 200222, DOI: 10.1002/crat.202200222
-
Sahil Sharma, Vijay Kumar Bhat, Sohan Lal, Edge resolvability of crystal cubic carbon structure, Theoretical Chemistry Accounts, 142:24 (2023) DOI:10.1007/s00214-023-02964-3
-
Karnika Sharma, Vijay Kumar Bhat, and Jia-Bao Liu, Second leap hyper-Zagreb coindex of certain benzenoid structures and their polynomials, Computational and Theoretical Chemistry, 1223.114088 (2023). DOI: 10.1016/j.comptc.2023.114088.
-
Sunny Kumar Sharma, Malkesh Singh, and Vijay Kumar Bhat, Vertex-Edge Partition Resolvability for Certain Carbon Nanocones, Polycyclic Aromatic Compounds, (2023. https://doi.org/10.1080/10406638.2023.2206142.
-
Sunny Kumar Sharma, Vijay Kumar Bhat, Hamiden Abd El-Wahed Khalifa & Agaeb Mahal Alanzi, Mixed Metric Dimension of Certain Carbon Nanocone Networks, Polycyclic Aromatic Compounds, (2023). DOI: https://doi.org/10.1080/10406638.2023.2211734
-
S. Lal, V.K. Bhat, On the dominant local metric dimension of certain polyphenyl chain graphs. Theor Chem Acc 142, 56 (2023). https://doi.org/10.1007/s00214-023-02985-y
-
Sahil Sharma, Vijay Kumar Bhat, Sohan Lal, The metric resolvability and topological characterisation of some molecules in H1N1 antiviral drugs, Molecular Simulation (2023), https://doi.org/10.1080/08927022.2023.2223718
-
Malkesh Singh, Sunny Kumar Sharma, Vijay Kumar Bhat, On mixed metric dimension of crystal cubic carbon structure, J. Math. Chem. (2023). https://doi.org/10.1007/s10910-023-01507-2
-
Sunny Kumar Sharma & Vijay Kumar Bhat (2023) Independence in multiresolving sets of graphs, International Journal of Computer Mathematics: Computer Systems Theory, Vol 8(2) (2023), 99-107. DOI: 10.1080/23799927.2023.2182234
-
Sunny Kumar Sharma, and Vijay Kumar Bhat, Metric dimension of line graph of the subdivision of the graphs of convex polytopes, TWMS J. App. and Eng. Math. Vol. 13(2) (2023), 448-461.
-
Vijay Kumar Bhat, A note on zero divisor graph with respect to annihilator ideals of a ring, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 34 (2023), 131–137.
-
Sohan Lal, Vijay Kumar Bhat On the local metric dimension of generalized wheel graph, Asian Eorp. J. Math. Vol. 16(11) (2023) 2350194. https://doi.org/10.1142/S1793557123501942
- Bao-Hua Xing, Sunny Kumar Sharma, Vijay Kumar Bhat, Hassan Raza, and Jia-Bao Liu, The Vertex-Edge Resolvability of Some Wheel-Related Graphs, Journal of Mathematics, Volume 2021, Article ID 1859714, 16 pages, https://doi.org/10.1155/2021/1859714.
- Sunny Kumar Sharma and Vijay Kumar Bhat, On Some Plane Graphs and Their Metric Dimension, Int. J. Appl. Comput. Math, 7:203 (2021). https://doi.org/10.1007/s40819-021-01141-z
- Sunny Kumar Sharma and Vijay Kumar Bhat, On metric dimension of plane graphs Jn, Kn and Ln, Algebra Comb. Discrete Appl., 8(3) (2021). 197-212.
- Sunny Kumar Sharma and Vijay Kumar Bhat, Rotationally symmetrical plane graphs and their Fault-tolerant metric dimension, Univ. Craiova Ser. Mat. Inform., 48(2) (2021). 307-318.
- Vijay Kumar Bhat and Pradeep Singh, On Zero Divisor Graph of Matrix Ring Mn(Zp), J. Appl. Math., 34(6) (2021), 1111-1122. Doi: http://dx.doi.org/10.12732/ijam.v34i6.5
- Sharma, S.K., Bhat, V.K. On metric dimension of plane graphs with m/2 number of 10 sided faces. J Comb Optim 44 (2022) 1433–1458. https://doi.org/10.1007/s10878-022-00899-2
- Malkesh Singh, Vijay Kumar Bhat , On Metric Dimension of Hendecagonal Circular Ladder Hn, Univ. Craiova Ser. Mat. Inform., 50(2) (2023), 394–403.
- Sunny Kumar Sharma, and Vijay Kumar Bhat, On the Metric Dimension of a Class of Planar Graphs, TWMS J. App. and Eng. Math. Vol. 13(4) (2023), 1298-1310.
- Vijay Kumar Bhat and Karnika Sharma, On Some Topological Indices for the Orbit Graph of Dihedral Groups, Journal of Combinatorial Mathematics and Combinatorial Computing, 117 (2023), 195–208 https://doi.org/10.61091/jcmcc117-18
- Sunny Kumar Sharma1 and Vijay Kumar Bhat, On Vertex-Edge Resolvability for the Web Graph and Prism Related Graph, Ars Combinatoria, 157 (2023), 95–108.
- Karnika Sharma , Vijay Kumar Bhat and Pradeep Singh, On the Orbital Regular Graph of Finite Solvable Groups, Utilitas Mathematica, 118 (2023), 15–25.
- Sohan Lal, Vijay Kumar Bhat , Karnika Sharma and Sahil Sharma, Topological indices of lead sulphide using polynomial technique, Molecular Physics, Vol. 122 (3) (2024), e2249131. https://doi.org/10.1080/00268976.2023.2249131
- Sohan Lal, Vijay Kumar Bhat, Sahil Sharma, Topological indices and graph entropies for carbon nanotube Y-junctions, J. Math. Chem. (2023). https://doi.org/10.1007/s10910-023-01520-5
- Malkesh Singh, Sunny Kumar Sharma, Vijay Kumar Bhat, Vertex-Based Resolvability Parameters for Identification of Certain Chemical Structures, ACS Omega, (2023), https://doi.org/10.1021/acsomega.3c06306
- Shriya Negi, Sohan Lal, and Vijay Kumar Bhat , On boron nanotubes and their face index, Mechanics of Advanced Materials and Structures, (2023) https://doi.org/10.1080/15376494.2023.2269649
- Sohan Lal, Vijay Kumar Bhat, Sahil Sharma, Topological Descriptors of Crystal Carbon Graphite, Polycyclic Aromatic Compounds, (2023). https://doi.org/10.1080/10406638.2023.2283197
- Sohan Lal, Shriya Negi, and Vijay Kumar Bhat, Degree-based topological indices of boron nanotubes, AIP Advances 13, 105321 (2023). https://doi.org/10.1063/5.0164989
- Sunny Kumar Sharma, Vijay Kumar Bhat, and Sohal Lal, Edge resolving number of pentagonal circular ladder, Univ. Craiova Ser. Mat. Inform., 50(1) (2023), 152–170.
- Malkesh Singh, Vijay Kumar Bhat , On Metric Dimension of Hendecagonal Circular Ladder Hn, Univ. Craiova Ser. Mat. Inform., 50(2) (2023), 394–403.
- Yousef Al-Qudah, Ali Jaradat , Sunny Kumar Sharma and Vijay Kumar Bhat; Mathematical analysis of the structure of one-heptagonal carbon nanocone in terms of its basis and dimension, Phys. Scr. 99 (2024) 055252. DOI: https://doi.org/10.1088/1402-4896/ad3add
- Malkesh Singh , Sohan Lal , Sunny Kumar Sharma and Vijay Kumar Bhat, Edge dependent fault-tolerance in certain carbon-based crystal structures, Phys. Scr. 99 (2024) 085224 https://doi.org/10.1088/1402-4896/ad5fcb
- Shriya Negi, Vijay Kumar Bhat; Face Index of Silicon Carbide Structures: An Alternative Approach, Silicon (2024) https://doi.org/10.1007/s12633-024-03119-0
- Vijay Kumar Bhat, Malkesh Singh , Karnika Sharma , Maryam Alkandari2 and Latif Hanna2; On the Laplacian Energy of an Orbit Graph of Finite Groups, Utilitas Mathematica, 119 (2024) 9–16 DOI: https://doi.org/10.61091/um119-02
- Sunny Kumar Sharma,*, and Vijay Kumar Bhat, Some Convex Polytopes Joining Paths and Their Metric Dimension, Journal of Combinatorial Mathematics and Combinatorial Computing, 120 (2024): 177–190, https://doi.org/10.61091/jcmcc120-015
- Malkesh Singh and Vijay Kumar Bhat, On Hendecagonal Circular Ladder and its Metric Dimension, International Journal of Computer Mathematics: Computer Systems Theory, (2024) https://doi.org/10.1080/23799927.2024.2364650
- K. Sharma , V. K. Bhat, Some Planar Graphs with Ten-Sided Faces and Their Metric Dimension, TWMS J. App. and Eng. Math. V.14, N.2, (2024), 834-845
- Shriya Negi, Vijay Kumar Bhat; Face Index of Silicon Carbide Structures: An Alternative Approach, Silicon (2024) https://doi.org/10.1007/s12633-024-03119-0
- Vijay Kumar Bhat, Pradeep Singh, On Diameter and Girth of Product of Zero-Divisor Graphs, TWMS J. App. and Eng. Math., 14(3) (2024), 921-933.