LESSON PLAN 1

Course Title:	Advanced Topics in Algebra			
Course Code:	<u>MTE7131</u>			
Course Coordinator	V. K. Bhat			
Credits	5			
Evaluation Scheme Total 100 Marks				
Quiz (Total 20 Marks)	Assignment/Project (Total 20 marks) (Minimum Two Assignments or one Project)	Mid-Term	Major Examination	Total
Quiz IQuiz IIQuiz IIIQuiz IV(5 marks)(5 marks)(5 marks)(5 marks)		20 marks) (1 ^½ Hour Duration)	(40 marks) (3 Hour Duration	100 Marks
WEEKS	TOPICS TO BE COVERED			
Week 1	Rings, Matrix rings, Polynomial rings			
Week 2	Skew Polynomial rings, Laurent rings, Boolean rings. Opposite ring.			
Week 3	Direct Products, Ideals, Homomorphism of rings, Endomorphism rings			
Week 4	Field of fractions, Prime fields			
Week 5	PIDS and UFDS			
Week 6	Modules; Direct product, Direct sum of modules			
Week 7	Free modules, Homomorphism of modules			
Week 8	Maximal submodule, Minimal Submodule, Simple modules			
Week 9	Schurs lemma, Annihilator of a Subset of a module			
Week 10	Modules over PID's, Torsion modules, torsion free modules			
Week 11 (17 th -21 st March, 2025)	Mid-Term			
2 nd April, 2025	Showing of Mid-Term Answer Sheets			
Week 13	Chain conditions, Artinian modules, Northerian modules			
Week 14	Composition series, Modules of finite length			
Week 15	Jordan Holder Theorem. Artinian rings, Noetherian rings			
Week 16	Hilbert Basis Theorem, I.S.Cohen's Theorem, Introduction to Nil radical and Jacobson radical.			
Week 17 (5 th -9 th May, 2025)	Revision Week			
Week 18 (13 th – 22 nd May, 2025)	Major Examinations			
29 th May, 2025	Showing of Major Exams Answer Sheets			

Course Outcomes:

CO1: Understand application of modules over rings as an analogue of vector spaces over fields.

CO2: Understand the notion of lengths of chains of prime ideals in commutative Noetherian rings and its analogue in non-commutative set up.

CO3: Study the radicals i.e. Prime ideals, Jacobson radical and Nil radical and brief introduction to their possible application

Recommended Books:

1. C. Musili, Introduction to rings and modules, Narosa, 2003.

2. K.R. Gooderal and R.B. Warfield, Introduction to Non-commutative rings, Cambridge University Press, 2004.

3. N. McCoy, Ring Theory, Chelsea Pub Co., 1973.

Calendar of Quizzes/Assignment etc. to be provided as per below details and exact dates to be fixed in consultation with other course coordinators to avoid overlap of Quizzes of different courses.

Component	Date	
Quiz-I	27 th -31 st , January 2025	
Quiz-II	24 th -28 th February, 2025	
Assignment-I	10 th -12 th February, 2025	
Mid-Term	17-21 st March, 2025	
Assignment-II/	21 st – 24 th April, 2025	
Project Submission		
Quiz-III	7 th – 11 th April, 2025	
Quiz-IV	28 th April-2nd, May, 2025	
Major Exam	$13^{th} - 22^{nd}$ May, 2025	

Note:

- 1. One surprise Quiz may be fixed out of Quiz-II, Quiz-III or Quiz-IV.
- 2. In case of any deviation in evaluation methodology for courses such as AEC/VAC/SEC shall be mentioned accordingly. The, same shall be approved by the next BOS of school if not done earlier.

Signature of Course Coordinator : V. K. Bhat