Associate Professor, School of Mathematics, SMVDU (2011-2023)
Assistant Professor, School of Mathematics, SMVDU (2008-2011)
[1]. J. K. Kohli, A.K. Das and R. Kumar, Weakly functionally q-normal spaces, q-shrinking of covers and partition of unity, Note di Matematica, 19(2) (1999), 293-297.
[2]. J. K. Kohli and A. K. Das, New normality axioms and decompositions of normality, Glasnik Matematicki, 37(57)(2002), 163-173.
[3]. J. K. Kohli and A. K. Das, Characterizations of certain sub(super)-classes of Hausdorff spaces and a factorization of regularity, Indian Journal of Pure and Applied Mathematics, 35(4)(2004), 463-470.
[4]. A. K. Das, A note on q-Hausdorff spaces, Bull. Cal. Math. Soc., 97(1)(2005), 15-20.
[5]. J. K. Kohli and A. K. Das, On functionally q-normal spaces, Applied General Topology, Vol 6, no. 1 (2005), 1-14.
[6]. J. K. Kohli and A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Applied General Topology 7(2)(2006), 233-244.
[7]. A. K. Das, ∆-normal spaces and decompositions of normality, Applied General Topology, Vol 10, no. 2 (2009), 197-206.
[8]. A. K. Das, Simultaneous generalizations of regularity and normality, European J. Pure Appl Math, 4(1)(2011), 34-41.
[9]. A. K. Das, On some Simultaneous generalizations of normality and regularity, Rev. Bull. Cal. Math. Soc., 21 (1)(2013), 103-108.
[10]. A. K. Das, A note on spaces between normal and k-normal spaces, Filomat 27:1 (2013), 85-88.
[11]. A. K. Das, A note on weak structures due to Csasar, Bul. Acad. Stiinte Repub. Mold. Mat, Number 2(78), 2015, 114-116.
[12]. A. K. Das and Pratibha Bhat, A class of spaces containing all densely normal spaces, Indian J. Math., 57 (2), 2015, 217-224.
[13]. Pratibha Bhat and A. K. Das, Some higher separation axioms via sets with non-empty interior, Cogent Mathematics, 2015, 2: 1092695. (Currently known as Research in Mathematics).
[14]. Pratibha Bhat and A.K. Das, On some generalizations of normality, Journal of Advanced Studies in Topology, 6:4, 2015, 129-134.
[15]. A. K. Das, Pratibha Bhat and Ria Gupta, Factorizations of normality via generalizations of β-normality, Math Bohemica, 141 (2016), No. 4, 463–473.
[16]. A. K. Das and Pratibha Bhat, Decompositions of Normality and interrelation among its variants, Math. Vesnik, 68, 2 (2016), 77-86.
[17]. A. K. Das, Pratibha Bhat and J. Tartir, On a simultaneous generalization of β-normality and almost normality, Filomat, 31:2 (2017), 425–430.
[18] A. K. Das, Pratibha Bhat and J. Tartir, Addendum: “On a simultaneous generalization of β-normality and almost normality”, Filomat 31:19 (2017), 6021–6022.
[20]. A. K. Das and Pratibha Bhat, A decomposition of normality via a generalization of k-normality, Applied general topology, 18, no. 2 (2017), 231-240.
[21]. A. R. Prasannan, Jeetendra Aggarwal, A. K. Das, Jayanta Biswas, A class of mappings between Rz-supercontinuous functions and Rδ-supercontinuous functions. Honam Math. J., 39 (2017), no. 4, 575–590.
[22]. Ria Gupta, A.K. Das, New Separation axioms on closure spaces generated by relations, Proceedings of the Jangjeon Mathematical Society, 21 (2018), No. 1. 23 – 31.
[23]. A.K. Das and S.S. Raina, On Relative -normality, Acta Mathematica Hungarica, 160 (2) (2020), 468–477.
[24]. Ria Gupta, A. K. Das, Some Variants of Normal Čech Closure Spaces via Canonically Closed Sets, Mathematics, 2021, 9(11), 1225.
[25]. S.S. Raina. A. K. Das, Some new variants of relative regularity via regularly closed sets, Journal of Mathematics, 2021, Art. ID 7726577, 6 pp.
[26]. Ria Gupta, A. K. Das, Some variants of strong normality in closure spaces generated via relations, Journal of Mathematics, 2021, Art. ID 6917297, 7 pp.
[27]. A. K. Das, Ria Gupta, On normality of a closure space generated from a tree by relation, Asian-Eur. J. Math., 15 (2022), no. 6, Paper No. 2250110, 10 pp.
[28]. Sehar Shakeel Raina, A. K. Das, Some Variants of Normality in Relative Topological, Filomat, Vol. 36, No. 12 (2022), 4241-4249.
[29]. Sehar Shakeel Raina, A. K. Das, Relative Separation Axioms via Semi-open Sets, Buletinul Academiei de Stiinte a repub. Moldova, Mathematic, Volume 102 (2), 2023, 11–18.
[30]. Ria Gupta, A. K. Das, Closure Space generated via Boolean Matrix, API Conference Proceeding, September 2023.
[31]. Ria Gupta, A. K. Das, On two types of closure operators associated with networks, International Journal of Computer Mathematics: Computer Systems Theory, 2024, VOL. 9, NO. 4, 220–232.
SUPERVISION OF Ph.D. STUDENT:
[1]. Pratibha Bhat (Degree Awarded: 2017)
Title of the thesis: Some Weak Variants of Normality in General Topology.
[2]. Ria Gupta (Degree Awarded: July 2022)
Title of the thesis: Study of some generalized Separation axioms in Closure Spaces.
[3]. Sehar Shakeel Raina (Degree Awarded: March 2022)
Title of the thesis: A Study on Some Relative Topological Properties.
[4] Prashant Dwivedi (Continuing)
Title of the thesis: A Study On Some Variants of Paracompact Spaces.