LESSON PLAN 1

Course Title:				Foundations of Modern Physics					
Course Code:				PHL MD208					
Course Coordinator				Dr. Ram Prakash					
Credits				4					
Evaluation Scheme Total 100 Marks									
Quiz (Total 20 Marks))	Assignment/Project (Total 20 marks) (Minimum Two Assignments or one Project)	Mid-Term	Major Examination	Total		
Quiz I (5 marks	Quiz II (5 marks)	Quiz III (5 marks)	Quiz IV (5 marks)		20 marks) (1 ^{1/2} Hour Duration)	(40 marks) (3 Hour Duration	100 Marks		
WEEKS				TOPICS TO BE COVERED					
Week 1				Special Theory of Relativity: Postulates – Lorenz transformations – Time dilation – Length contraction					
Week 2				Doppler effect – Twin paradox – velocity addition – relativistic momentum Mass energy equivalence.					
Week 3				Electricity and Magnetism in relativity – Introduction to general relativity					
Week 4				EM waves – Black body radiation – Photoelectric effect – X-rays – Diffraction of x-rays					
Week 5				 Compton effect – de Broglie waves – Phase and group velocities Electron diffraction – Uncertainty principle. 					
Week 6				Quantum mechanics: Wave equation – Schrödinger equation –					
Week 7				Operators – Postulates of quantum mechanics –					
Week 8				Particle in a box – Finite potential well					
Week 9				Introduction to quantum tunneling – Harmonic oscillator					
Week 10				Hydrogen atom: Schrödinger equation – Separation of variable – Quantum numbers – Quantization of energy					
Week 11 (17th -21st March, 2025)				Mid-Term					
2 nd April, 2025				Showing of Mid-Term Answer Sheets					
Week 13				Angular momentum – Electron Probability density, Radiative transitions, Selection Rules, Zeeman effect					
Week 14				Atomic structure: Electron orbits – Atomic spectra – Bohr atom – Energy levels and spectra– Absorption spectra					

Week 15	Finite nuclear mass correction, Sommerfeld model – Bohr's quantization rule,
Week 16	-Bohr's correspondence principle, Vector atom model, L-S and j-j coupling.
Week 17 (5 th -9 th May, 2025)	Revision Week
Week 18 (13 th – 22 nd May, 2025)	Major Examinations
29 th May, 2025	Showing of Major Exams Answer Sheets

Course Outcomes: Upon successful completion of this course, students will be able to:

CO1: Understand the fundamentals of Special and Analyze the behavior of matter and radiation. **CO2:** Derive and solve problems using the Schrödinger equation, apply the concept of wave functions and operators and

CO3: Explain the quantum mechanical treatment of the hydrogen atom, including the Schrödinger equation,

CO4: Develop an understanding of atomic structure, including electron orbits, atomic spectra, and the Bohr model of the atom.

Recommended Books:

- 1. Concepts of Modern Physics, Arthur Beiser, Tata McGraw Hill, (2002), 6th Edition.
- 2. Introduction to Modern Physics, H. S. Mani and G. K. Metha, Affiliated East-West Press, (1988

Calendar of Quizzes/Assignment etc. to be provided as per below details and exact dates to be fixed in consultation with other course coordinators to avoid overlap of Quizzes of different courses.

Component	Date
Quiz-I	27 th -31 st , January 2025
Quiz-II	24 th -28 th February, 2025
Assignment-I	10 th -12 th February, 2025
Mid-Term	17-21 st March, 2025
Assignment-II/	21 st – 24 th April, 2025
Project Submission	
Quiz-III	7 th – 11 th April, 2025
Quiz-IV	28 th April-2nd, May, 2025
Major Exam	13 th – 22 nd May, 2025

Note:

- 1. One surprise Quiz may be fixed out of Quiz-II, Quiz-III or Quiz-IV.
- 2. In case of any deviation in evaluation methodology for courses such as AEC/VAC/SEC shall be mentioned accordingly. Thus, same shall be approved by the next BOS of school if not done earlier.

Signature of Course Coordinator :