Course Title:	Linear Programming and Gan	ne Theory			
Course Code:	MTL-3261				
Course Coordinator	Dr. Rakesh Kumar				
Credits	4-1-0 = 05				
Eva	luation Scheme Total 100 Ma	rks		7	
Quiz (Total 20 Marks)	Assignment/Project (Total 20 marks) (Minimum Two Assignments or one Project)	Mid-Term	Major Examination	Total	
Quiz I Quiz II Quiz III Quiz IV (5 marks) (5 marks) (5 marks)		20 marks) (1 ^{1/2} Hour Duration)	(40 marks) (3 Hour Duration	100 Marks	
WEEKS	TOPICS TO BE COVERED				
Week 1	Introduction: Meaning and nature of Operations Research (OR), History and latest developments of OR				
Week 2	Applications of OR, OR models, OR methodology				
Week 3	Linear Programming Problem (LPP): Introduction, Mathematical Formulation of LPP, Solutions of LPP				
Week 4	Graphical Solution to Linear programming problems, Special cases in graphical method				
Week 5	General Form of LPP, Slack a LPP, Assumptions, Limitation	and Surplus V	ariables, Standa	rd form of	
Week 6	Computational procedure of S examples, Special cases in Sir	implex Methorplex procedu	od and based nu ure	merical	
Veek 7	Artificial Variables, Big-M m	ethod, Two-P	hase method		
Veek 8	Case Studies based on Linear	Programming	g		
Week 9	Mathematical Formulation of Transportation Problem, Initial Basic Feasible Solution by North West Corner Rule, Least Cost Method				
Week 10	Vogel's Approximation methor Algorithm				
Week 11 (17th -21st March, 2025)	Mid-Term				
2 nd April, 2025	Showing of Mid-Term Answ	er Sheets			
Week 13	Case studies based on transportation and assignment problems				

Week 14	Introduction to Game Theory, Maximin-Minimax principle, Saddle point	
Week 15	Games with saddle point, Applications of game theory	
Week 16	Case studies based on game theory	
Week 17 (5th -9th May, 2025)	Revision Week	
Week 18 (13th – 22nd May, 2025)	Major Examinations	
29th May, 2025	Showing of Major Exams Answer Sheets	

Course Outcomes:

After successful completion of the course, the students will be able to

CO1: historical background and developments in Operations Research

CO2: Formulate real world problems as linear programming problems and solve them using various

Techniques

CO3: apply transportation and assignment models in solving real life problems

CO4: understand fundamental concepts of game theory and apply them in industry

Recommended Books:

- 1. Hadley, G., Linear Programming, Narosa Publishing House, 8th edition.
- 2. Sharma, S. D., Operations Research, Kedar Nath Ram Nath-Meerut, 10th edition.
- Swarup, K, Gupta, M. and Manmohan, Operations Research, Sultan Chand and Sons, 15th Edition.
- 4. Taha, H.A., Operations Research, Pearson Education, 8th edition.

Tentative Calendar of Quizzes and Assignments. The exact dates and time will be informed in due course of time.

ue course of time.	Date
Component	
	27 th -31 st , January 2025
Quiz-I	24 th -28 th February, 2025
Quiz-II	
	10 th -12 th February, 2025
Assignment-I	17-21st March, 2025
Mid-Term	
	21 st – 24 th April, 2025
Assignment-II/	
Project Submission	W 2025
Quiz-III	7 th – 11 th April, 2025

Quiz-IV	28 th April-2nd, May, 2025
Major Exam	13 th – 22 nd May, 2025

Signature of Course Coordinator: