Shri Mata Vaishno Devi University
A State University recognized under Section 2 (f) & 12 (B) of UGC Act of 1956
Ranked 79th among Engineering Institutions, Ranked 24th in Arhitecture and Among Ranked Top 100 Business Schools in National Institutional Ranking Framework (NIRF 2021) declared by MHRD, Govt. of India.

Being an engineering department, the school is focusing on research work only in those areas where potential application of the research is in-sight and the benefits are tangible. Focus is more on the areas where the research work can result in patents or in products for the industry. This necessarily translates into research areas where experimental work becomes very relevant and supports simulation work.

Currently the school is focusing on the following areas of research:

Research Projects:
S.No. Agency Title of the Project Name of Coordinator Amount approx.
1. UGC Secure & QoS oriented routing protocol for MANETs Dr. Ajay Koul 7.68 Lacs.
2. AICTE Bipolar Networks Prof. M. L. Garg 3 Lacs.
3. MHRD ERP Mission Ms. Sonika Gupta/ Ajay Koul 25 Lacs.
4. MHRD Mobile e learning Terminals Dr. Ajay Koul/Dr Sunil Wanchoo 40 Lacs.
5. SMVDU Established Network Centre of SMVDU Phase-1 Dr. Ajay Koul 95 Lakhs
6. SMVDU Established Network Centre of SMVDU Phase-II, III,IV,V Dr. Naveen Gondhi 1 Cr.
7. SMVDU Payroll System Dr. Sonika Gupta -
8. MHRD & IIT BOMBAY Akash for Education Dr. Naveen Gondhi 1 Lakh
9. MHRD & IIT BOMBAY Establishment of A View Classroom Mr Sudesh 3 Lakh
10.        
Data Mining

Data mining (or data discovery) is the process of autonomously extracting useful information or knowledge (actionable assets) from large data stores or sets. Data mining can be performed on a variety of data stores, including the World Wide Web, relational databases, transactional databases, internal legacy systems, pdf documents, and data warehouses. Many organizations have compiled a diverse collection of massively large and dynamic datasets over the years. Data mining is a tool that has been actively used to discover interesting and surprising patterns in these datasets. The technology has been successfully utilized by organizations that collect web click streams, financial transactions, observational science data, etc. Our research work would cover major algorithmic advances in data mining with a thrust towards both theoretical underpinnings of problems as well as successful practical deployments. Topics that would be covered in our research would include clustering, association rules, machine learning, web link analysis, data streams, and privacy-preserving algorithms.

Through Data mining techniques, a knowledge model is obtained representing behavior patterns in relevant problem variables or relations between them. Several algorithms are frequently tested generating different models.

The most usual algorithms or techniques are:

Data mining attempts to identify valid novel, potentially useful, and ultimately understandable patterns from huge volume of data. The mined patterns must be ultimately understandable because the purpose of data mining is to aid decision-making. A data mining algorithm is usually inherently associated with some representations for the patterns it mines. Therefore, an important aspect of a data mining algorithm is the comprehensibility of the representations it forms. That is, whether or not the algorithm encodes the patterns it mines in such a way that they can be inspected and understood by human beings.

It is evident that data mining algorithms with good comprehensibility are very desirable. Unfortunately, most data mining algorithms are not very comprehensible and therefore their comprehensibility has to be enhanced by extra mechanisms. Since there are many different data mining tasks and corresponding data mining algorithms, it is difficult for such a short article to cover all of them. So, the following discussions are restricted to the comprehensibility of classification algorithms, but some essence is also applicable to other kinds of data mining algorithms.

With the unprecedented rate at which data is being collected today in almost all fields of human endeavor, there is an emerging economic and scientific need to extract useful information from it. Data mining is the process of automatic discovery of patterns, changes, associations and anomalies in massive databases, and is a highly inter-disciplinary field representing the confluence of several disciplines, including database systems, data warehousing, machine learning, statistics, algorithms, data visualization, and high-performance computing

Data mining refers to the automated or semi-automated search for relationships and global patterning within data. Data mining techniques include data visualization, neural network analysis, and genetic algorithms. Data mining uses complex algorithms to search large amounts of data and find patterns, correlation's, and trends in that data. A data-mining application can create a model that can identify buying habits, shopping trends, credit card purchases as well as perform many non-commercial functions. Data mining, also known as knowledge-discovery in databases (KDD), is the practice of automatically searching large stores of data for patterns. To do this, data mining uses computational techniques from statistics and pattern recognition.

As data-mining has become recognized as a powerful tool, several different communities have laid claim to the subject:

In recent years, database and data mining communities have focused on a new model of data processing, where data arrives in the form of continuous streams. Because it is not feasible to store all data, it is quite challenging to perform the traditional data mining operations in a streaming environment. Our current and proposed research focuses on many challenges associated with mining streaming data. Our main thrust would be on designing algorithm which would be effective and efficient in frequent item set mining encompassing deterministic bounds on accuracy. The recent trend in algorithm development for this purpose is towards algorithms which are memory efficient and allow mining of datasets with large number of distinct items and/or very low support levels.


Dr. Baijnath Kaushik: Innovations in Artificial Intelligence, Machine Learning and Deep Learning Lab

New Events-2021

Dec. 08 - 10

2nd Virtual International Tribology Research Symposium

2nd Virtual International Tribology Research Symposium...Read More

Dec. 17

One-Day Workshop

One-Day Workshop On Waste Management in Residential Society...Read More

Dec. 21 - 27

AICTE - ISTE sponsored One Week Virtual Faculty Development Programme

on Thermoelectric Materials and Applications for Energy Harvesting and Power Generation...Read More

Dec. 27 - 31

A Five day online workshop: Life Skills Management for Teachers

A Five day online workshop for Teachers in Higher Education...Read More

Jan. 10 - 14

Faculty Development Program (Online)

Faculty Development Program (Online) on Sustainable Product Design and Manufacturing...Read More

More Events   

 

Achievements & Activities

08062021 AbhishekGuptaDr. Abhishek Gupta Delivers Invited Talk at North-Eastern Hill University, Shillong...Read More

08092021 baijDr. Kaushik of SMVDU Delivers a Talk on Data Science & Big Data...Read More

06092021 manojDr. Manoj Gupta Delivers Expert Lecture on Deep Learning...Read More

20082021 DrkaushikLatestDr Baijnath Kaushik, delivers an Invited Talk on Artificial Intelligence & Deep Learning...Read More

08062021 AbhishekGuptaDr Abhishek Gupta delivers invited talk in ATAL sponsored FDP...Read More

11012021 pooEr. Pooja Sharma Declares Qualified for the Award of Ph.D....Read More

04122020 googleGoogle's Bughunter Hall of Fame Makes Mention of SMVDU Student...Read More

06112020 DrKaushikDr. Baijnath Kaushik, Invited as a Resource Person at AICTE, ATAL FDP on Data Science...Read More

MalvikaMs. Malvika Ashok, SoCSE, published a research article in SCIE indexed journal...Read More

drAjayUSADr. Ajay Koul presented paper in USA...Read More

More Achievements 

 

Faculty Profile

drManojKumarGupta

Dr. Baij Nath Kaushik - Head of School

See All Faculty Members 

 

Laboratory Infrastructure

cse int labb

Advanced Unix Laboratory

See All 

 

Our Placements

placement cse

Placement Drive - Larsen & Toubro Ltd.

See All 

 

Research

cse prog labb

Advanced Unix Laboratory

See All